论文标题

深纤维聚类:解剖学知情的纤维聚类,自我监督深度学习,以进行快速有效的拖拉术

Deep fiber clustering: Anatomically informed fiber clustering with self-supervised deep learning for fast and effective tractography parcellation

论文作者

Chen, Yuqian, Zhang, Chaoyi, Xue, Tengfei, Song, Yang, Makris, Nikos, Rathi, Yogesh, Cai, Weidong, Zhang, Fan, O'Donnell, Lauren J.

论文摘要

白质纤维聚类是白质细胞的重要策略,可以对健康和疾病中的大脑联系进行定量分析。结合专家神经解剖标记,数据驱动的白质纤维聚类是创建可以建模各个个体白质解剖结构的地图集的强大工具。尽管使用经典的无监督机器学习技术显示出广泛使用的纤维聚类方法,但深度学习的最新进展揭示了朝着快速有效的纤维聚类的有前途的方向。在这项工作中,我们提出了一个针对白质纤维聚类,深纤维聚类(DFC)的新型深度学习框架,该框架解决了无监督的聚类问题作为一个自我监督的学习任务,该任务具有域特异性借口任务,以预测成对的纤维距离。该过程将学习每种纤维的高维嵌入特征表示,而不管拖拉期间重建的纤维点的顺序如何。我们设计了一种新型的网络体系结构,该网络体系结构代表输入纤维作为点云,并允许将来自灰质物质的其他输入信息纳入以提高簇的解剖相干性。此外,DFC通过拒绝簇分配概率低的纤维自然进行异常去除。我们评估了三个独立获取的队列的DFC,包括来自220名性别,年龄(年轻和老年人)的220名个人的数据,以及不同的健康状况(健康对照和多种神经精神疾病)。我们将DFC与几种最先进的白质纤维聚类算法进行了比较。实验结果表明,DFC在集群紧凑,概括能力,解剖相干性和计算效率方面的表现出色。

White matter fiber clustering is an important strategy for white matter parcellation, which enables quantitative analysis of brain connections in health and disease. In combination with expert neuroanatomical labeling, data-driven white matter fiber clustering is a powerful tool for creating atlases that can model white matter anatomy across individuals. While widely used fiber clustering approaches have shown good performance using classical unsupervised machine learning techniques, recent advances in deep learning reveal a promising direction toward fast and effective fiber clustering. In this work, we propose a novel deep learning framework for white matter fiber clustering, Deep Fiber Clustering (DFC), which solves the unsupervised clustering problem as a self-supervised learning task with a domain-specific pretext task to predict pairwise fiber distances. This process learns a high-dimensional embedding feature representation for each fiber, regardless of the order of fiber points reconstructed during tractography. We design a novel network architecture that represents input fibers as point clouds and allows the incorporation of additional sources of input information from gray matter parcellation to improve anatomical coherence of clusters. In addition, DFC conducts outlier removal naturally by rejecting fibers with low cluster assignment probability. We evaluate DFC on three independently acquired cohorts, including data from 220 individuals across genders, ages (young and elderly adults), and different health conditions (healthy control and multiple neuropsychiatric disorders). We compare DFC to several state-of-the-art white matter fiber clustering algorithms. Experimental results demonstrate superior performance of DFC in terms of cluster compactness, generalization ability, anatomical coherence, and computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源