论文标题

通过细分相位Oracle优化的振幅扩增

Amplitude Amplification for Optimization via Subdivided Phase Oracle

论文作者

Benchasattabuse, Naphan, Satoh, Takahiko, Hajdušek, Michal, Van Meter, Rodney

论文摘要

我们使用幅度扩增的修改变体提出了一种算法,以通过使用细分相位的Oracle来解决组合优化问题。甲骨文并没有将输入状态分为两组,而是将输入状态分为两组,而是将所有输入状态的阶段平均移动,而不是按其目标值成比例地更改每个输入状态的阶段。我们提供可视化幅度在应用细分相位甲骨文的每次迭代后如何变化,然后在复杂平面中进行常规的Grover扩散。然后,我们通过数值模拟显示,对于正常,偏斜正常和指数分布的目标值,该算法可用于扩增测量最佳解决方案的概率,以与搜索空间大小无关。在偏差正常和指数分布的情况下,可以将这种概率放大为接近统一,从而使我们的算法接近确定性。然后,我们修改算法,以证明如何将其扩展到更广泛的目标价值分布集。最后,我们使用查询复杂性模型讨论了与经典方案相比的加速度,并表明我们的算法比这些经典方法具有重要的优势。

We propose an algorithm using a modified variant of amplitude amplification to solve combinatorial optimization problems via the use of a subdivided phase oracle. Instead of dividing input states into two groups and shifting the phase equally for all states within the same group, the subdivided phase oracle changes the phase of each input state uniquely in proportion to their objective value. We provide visualization of how amplitudes change after each iteration of applying the subdivided phase oracle followed by conventional Grover diffusion in the complex plane. We then show via numerical simulation that for normal, skew normal, and exponential distribution of objective values, the algorithm can be used to amplify the probability of measuring the optimal solution to a significant degree independent of the search space size. In the case of skew normal and exponential distributions, this probability can be amplified to be close to unity, making our algorithm near deterministic. We then modify our algorithm in order to demonstrate how it can be extended to a broader set of objective value distributions. Finally, we discuss the speedup compared to classical schemes using the query complexity model, and show that our algorithm offers a significant advantage over these classical approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源