论文标题
部分可观测时空混沌系统的无模型预测
Probing Cross-Lingual Lexical Knowledge from Multilingual Sentence Encoders
论文作者
论文摘要
预处理的多语言模型(LMS)可以通过附加的微调或模型蒸馏和并行数据成功地转换为多语言句子编码器(SES;例如Labse,XMPNET)。但是,尚不清楚如何最好地利用它们代表跨语性词汇任务中的次句词汇(即单词和短语)。在这项工作中,我们探究了在其参数中存储的跨语性词汇知识的数量,并将它们与原始的多语言LMS进行比较。我们还设计了一种简单而有效的方法,可以通过廉价的对比度学习进行其他微调来揭示跨语义的词汇知识,这仅需要少量的单词翻译对。使用双语词汇诱导(BLI),跨语性的词汇语义相似性和跨语性实体链接为词汇探测任务,我们报告了对标准基准测试的可观提高(例如,BLI中的+10 Precision@1点)。结果表明,诸如LABSE之类的SE可以通过对比度学习程序“重新连接”为有效的跨语性词汇编码器,并且它们包含的跨语性词汇知识比“符合眼睛”的跨语义词汇知识。这样,我们还提供了一种有效的工具来利用在多语言句子编码中隐藏的“掩盖”多语言词汇知识。
Pretrained multilingual language models (LMs) can be successfully transformed into multilingual sentence encoders (SEs; e.g., LaBSE, xMPNet) via additional fine-tuning or model distillation with parallel data. However, it remains unclear how to best leverage them to represent sub-sentence lexical items (i.e., words and phrases) in cross-lingual lexical tasks. In this work, we probe SEs for the amount of cross-lingual lexical knowledge stored in their parameters, and compare them against the original multilingual LMs. We also devise a simple yet efficient method for exposing the cross-lingual lexical knowledge by means of additional fine-tuning through inexpensive contrastive learning that requires only a small amount of word translation pairs. Using bilingual lexical induction (BLI), cross-lingual lexical semantic similarity, and cross-lingual entity linking as lexical probing tasks, we report substantial gains on standard benchmarks (e.g., +10 Precision@1 points in BLI). The results indicate that the SEs such as LaBSE can be 'rewired' into effective cross-lingual lexical encoders via the contrastive learning procedure, and that they contain more cross-lingual lexical knowledge than what 'meets the eye' when they are used as off-the-shelf SEs. This way, we also provide an effective tool for harnessing 'covert' multilingual lexical knowledge hidden in multilingual sentence encoders.