论文标题

整形黑洞周围的绳子动力学

Chaotic dynamics of string around the conformal black hole

论文作者

Ma, Da-Zhu, Xia, Fang, Zhang, Dan, Fu, Guoyang, Wu, Jian-Pin

论文摘要

在本文中,我们对整形黑洞周围的弦的混乱动力学进行了一项系统和深入的研究。根据保形黑洞的特征参数和弦的初始位置,有三种动态行为:有序,混乱和被捕获,混乱但未被捕获。一个特别有趣的观察结果是,当黑洞地平线消失时,混沌动力学存在急剧的转变,这是弦的初始位置的统计。它提供了一种探测巨大身体的地平线结构的可能方法。我们还研究了全息双野外理论中提出的广义MSS(Maldacena,Shenker和Stanford)的不平等,并发现广义MSS不平等即使在渐近平坦的黑洞背景中也存在。特别是,随着弦的初始位置接近黑洞地平线,Lyapunov指数也接近了广义MSS不等式的上限。

In this paper, we make a systematical and in-depth study on the chaotic dynamics of the string around the conformal black hole. Depending on the characteristic parameter of the conformal black hole and the initial position of the string, there are three kinds of dynamical behaviors: ordered, chaotic and being captured, chaotic but not being captured. A particular interesting observation is that there is a sharp transition in chaotic dynamics when the black hole horizon disappears, which is indepent of the initial position of the string. It provides a possible way to probe the horizon structure of the massive body. We also examine the generalized MSS (Maldacena, Shenker and Stanford) inequality, which is proposed in holographic dual field theory, and find that the generalized MSS inequality holds even in the asymptotically flat black hole background. Especially, as the initial position of the string approaches the black hole horizon, the Lyapunov exponent also approaches the upper bound of the generalized MSS inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源