论文标题
中性对Cassini等离子体和灰尘测量的次级排放产生的影响
Implications from secondary emission from neutral impact on Cassini plasma and dust measurements
论文作者
论文摘要
我们研究了气体分子对Cassini Langmuir探针(RPWS-LP或LP)测量在土星电离层中测量结果所产生的二级电子和离子发射的作用。我们根据实验室测量和从1P/HALLEY的数据添加一个模型,以从LP偏置电压扫描中得出等离子体参数的方程式。从卡西尼(Cassini)的大结局轨道上重新绘制了数百次扫描,我们发现了先前对土星电离层的LP研究的三个开放难题的合理解释。我们发现了观察到的Cassini航天器,可能被高估的电离层电子温度以及报告过多的离子电流的解释。对于详细分析的扫描,我们没有发现(间接或直接)尘埃在土星电离层中具有重要电荷作用的证据。我们还通过土星电离层的详细信息(ION和中性质谱仪(INM))产生了H2O数量密度的估计值。我们的分析揭示了一个电离层,该电离层在所有六次最终旋转中都具有高度结构的纬度,混合比随纬度的两个数量级而变化,并且在旋转和高度之间有一个数量级。结果通常与经验光化学模型平衡了H+离子的产生与H2O,CH4和CO2的H+损失的产生,而H2O,CH4和CO2的水蒸气似乎是在产量和浓度方面作为信号的最有可能的主要来源。
We investigate the role of secondary electron and ion emission from impact of gas molecules on the Cassini Langmuir Probe (RPWS-LP, or LP) measurements in the ionosphere of Saturn. We add a model of the emission currents, based on laboratory measurements and data from comet 1P/Halley, to the equations used to derive plasma parameters from LP bias voltage sweeps. Reanalysing several hundred sweeps from the Cassini Grand Finale orbits, we find reasonable explanations for three open conundrums from previous LP studies of the Saturn ionosphere. We find an explanation for the observed positive charging of the Cassini spacecraft, the possibly overestimated ionospheric electron temperatures, and the excess ion current reported. For the sweeps analysed in detail, we do not find (indirect or direct) evidence of dust having a significant charge-carrying role in Saturn's ionosphere. We also produce an estimate of H2O number density from the last six revolutions of Cassini through Saturn's ionosphere in higher detail than reported by the Ion and Neutral Mass Spectrometer (INMS). Our analysis reveals an ionosphere that is highly structured in latitude across all six final revolutions, with mixing ratios varying with two orders of magnitude in latitude and one order of magnitude between revolutions and altitude. The result is generally consistent with an empirical photochemistry model balancing the production of H+ ions with the H+ loss through charge transfer with e.g., H2O, CH4 and CO2, for which water vapour appears as the likeliest dominant source of the signal in terms of yield and concentration.