论文标题
相对论动力学理论的扰动方法和一阶流体动力学的出现
Perturbative approaches in relativistic kinetic theory and the emergence of first-order hydrodynamics
论文作者
论文摘要
可以根据平衡状态周围的温度,化学势和流速的衍生物中的扰动序列来制定流体动力学。多年来,已经提出了该系列的不同表述,因此导致了各种流体动力学理论的发展。在这项工作中,我们使用动力学理论中的一般匹配条件讨论了Chapman和Enskog和Hilbert提出的扰动扩展的相对论概括。这使我们能够以一种全面的方式描述流体动力场的不同平衡定义如何影响流体动力扰动系列的发展。我们提供了一种扰动方法,用于系统地得出Bemfica,Disconzi,Noronha和Kovtun(BDNK)最近提出的流体动力表述,从相对论动力学理论中。使用Boltzmann方程的松弛时间近似的新公式明确计算出出现在BDNK(一阶)中的各种传输系数。假设Bjorken流动,我们还确定了BDNK理论的流体动力吸引子,并比较了使用该公式获得的总体流体动力学进化与以色列 - 斯图尔特运动方程以及动力学理论产生的总体流体动力进化。
Hydrodynamics can be formulated in terms of a perturbative series in derivatives of the temperature, chemical potential, and flow velocity around an equilibrium state. Different formulations for this series have been proposed over the years, which consequently led to the development of various hydrodynamic theories. In this work, we discuss the relativistic generalizations of the perturbative expansions put forward by Chapman and Enskog, and Hilbert, using general matching conditions in kinetic theory. This allows us to describe, in a comprehensive way, how different out-of-equilibrium definitions for the hydrodynamic fields affect the development of the hydrodynamic perturbative series. We provide a perturbative method for systematically deriving the hydrodynamic formulation recently proposed by Bemfica, Disconzi, Noronha, and Kovtun (BDNK) from relativistic kinetic theory. The various transport coefficients that appear in BDNK (at first-order) are explicitly computed using a new formulation of the relaxation time approximation for the Boltzmann equation. Assuming Bjorken flow, we also determine the hydrodynamic attractors of BDNK theory and compare the overall hydrodynamic evolution obtained using this formulation with that generated by the Israel-Stewart equations of motion and also kinetic theory.