论文标题

Riesz空间具有广泛的Orlicz增长

Riesz spaces with generalized Orlicz growth

论文作者

Hästö, Peter, Juusti, Jonne, Rafeiro, Humberto

论文摘要

当$φ:ω\ times [0,\ infty)\ to [0,\ infty)$是一个广义的$φ$ function时,考虑$φ\ times [0,\ infty)\ to $φ$φ$ fuction $φ$φ$ function时,我们考虑了在实际线路上定义的功能$ f $的riesz $ ϕ $变量。我们表明,当函数$ f $具有界变化时,它会生成准巴纳赫空间,并得出模块化的显式公式。由此产生的$ BV $ -Type Energy先前出现在图像修复模型中。我们在变量指数和ORLICZ案例中概括并改善了先前的结果,并回答了关于Riesz-Medvedev的问题,Appell,BanaśandBanaśand Merentes [\ emph {有界变异以及周围的},在非线性分析和应用中的研究,第1卷。 17,德格鲁特,柏林/波士顿,2014年]。

We consider a Riesz $ϕ$-variation for functions $f$ defined on the real line when $φ:Ω\times[0,\infty)\to[0,\infty)$ is a generalized $Φ$-function. We show that it generates a quasi-Banach space and derive an explicit formula for the modular when the function $f$ has bounded variation. The resulting $BV$-type energy has previously appeared in image restoration models. We generalize and improve previous results in the variable exponent and Orlicz cases and answer a question regarding the Riesz--Medvedev variation by Appell, Banaś and Merentes [\emph{Bounded Variation and Around}, Studies in Nonlinear Analysis and Applications, Vol. 17, De Gruyter, Berlin/Boston, 2014].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源