论文标题

通过超几何熵得出的三个不变的奇怪吸引子

Three invariants of strange attractors derived through hypergeometric entropy

论文作者

Okamura, Keisuke

论文摘要

提供了通过三个几何和动态不变的奇怪吸引者系统的新描述。它们是相关维度($ \ MATHCAL {D} $)和相关熵($ \ Mathcal {k} $),两者在过去几十年中引起了人们的注意,并且是一种新的不变性,称为相关浓度($ \ nathcal {a} $)。相关浓度定义为重建向量之间的归一化距离,通过在无限维嵌入空间上的基本概率度量进行评估。这三个不变性确定了系统的rényi-type扩展熵的缩放性能,该熵是由Kummer的汇合高几幅功能建模的,相对于量规参数($ρ$),与重建矢量之间的距离相连。熵功能在“微观”限制$ρ\ to \ infty $中重现了$ \ Mathcal {d} $和$ \ Mathcal {k} $的已知比例行为,同时表现出新的缩放行为,以$ \ \ \ \ \ \ \ \ \ \ \ \ \ m rathcal {a} $中的其他'macrocopopic'lim lim lim $ p \ 0 $ρ\ 0 $ρ\ 0 $ρ\ 0。通过非线性回归分析同时估算这三个不变性,而无需为每个不变的单独估计。通过离散系统和连续系统中的模拟验证了所提出的方法。

A new description of strange attractor systems through three geometrical and dynamical invariants is provided. They are the correlation dimension ($\mathcal{D}$) and the correlation entropy ($\mathcal{K}$), both having attracted attention over the past decades, and a new invariant called the correlation concentration ($\mathcal{A}$) introduced in the present study. The correlation concentration is defined as the normalised mean distance between the reconstruction vectors, evaluated by the underlying probability measure on the infinite-dimensional embedding space. These three invariants determine the scaling behaviour of the system's Rényi-type extended entropy, modelled by Kummer's confluent hypergeometric function, with respect to the gauge parameter ($ρ$) coupled to the distance between the reconstruction vectors. The entropy function reproduces the known scaling behaviours of $\mathcal{D}$ and $\mathcal{K}$ in the 'microscopic' limit $ρ\to\infty$ while exhibiting a new scaling behaviour of $\mathcal{A}$ in the other, 'macroscopic' limit $ρ\to 0$. The three invariants are estimated simultaneously via nonlinear regression analysis without needing separate estimations for each invariant. The proposed method is verified through simulations in both discrete and continuous systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源