论文标题
在AU MIC TESS观察中搜索耀斑的星形行星相互作用
Searching for flaring star-planet interactions in AU Mic TESS observations
论文作者
论文摘要
据称,紧密绕磁性恒星的行星能够以调节恒星活动的方式与磁场相互作用。这种与行星轨道相相的调节,例如增强的X射线活性,色球斑点,无线电发射或耀斑,被认为是磁性星形行星相互作用(SPI)的最明显迹象。然而,这种相互作用的大小受到限制,而相互作用的间歇性对于观察者来说是一个挑战。 AU MIC是早期的M矮人,迄今为止,最活跃的星球宿主被发现。它的最内向的伴侣Au Mic B是磁性SPI观测的有希望的目标。我们使用通过定制的Anderson-Darling测试使用Au Mic B获得了通过过渡系外行星调查卫星获得的AU MIC的光学光曲线。在大约50美元的观测日中,具有轨道,旋转和主息期的耀斑分布通常与内在的恒星耀斑一致。我们发现在我们样本的高能量一半($ ed> 1 $ s)中,在本质上有最强的偏差($ p = 0.07,\; n = 71 $)。如果它反映了来自AU MIC B的真实SPI信号,则将观测时间延长$ 2-3 $将产生$>3σ$检测。因此,对Au MIC的持续监测可能会显示出具有轨道相的耀斑SPI,而由于恒星的强差旋转,旋转调制将弄脏。
Planets that closely orbit magnetically active stars are thought to be able to interact with their magnetic fields in a way that modulates stellar activity. This modulation in phase with the planetary orbit, such as enhanced X-ray activity, chromospheric spots, radio emission, or flares, is considered the clearest sign of magnetic star-planet interaction (SPI). However, the magnitude of this interaction is poorly constrained, and the intermittent nature of the interaction is a challenge for observers. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b, is a promising target for magnetic SPI observations. We used optical light curves of AU Mic obtained by the Transiting Exoplanet Survey Satellite to search for signs of flaring SPI with AU Mic b using a customized Anderson-Darling test. In the about $50$ days of observations, the flare distributions with orbital, rotational, and synodic periods were generally consistent with intrinsic stellar flaring. We found the strongest deviation ($p=0.07,\;n=71$) from intrinsic flaring with the orbital period of AU Mic b, in the high energy half of our sample ($ED>1$ s). If it reflects the true SPI signal from AU Mic b, extending the observing time by a factor of $2-3$ will yield a $>3σ$ detection. Continued monitoring of AU Mic may therefore reveal flaring SPI with orbital phase, while rotational modulation will smear out due to the star's strong differential rotation.