论文标题

确定性分布式稀疏和超巨大跨度和连接证书

Deterministic Distributed Sparse and Ultra-Sparse Spanners and Connectivity Certificates

论文作者

Bezdrighin, Marcel, Elkin, Michael, Ghaffari, Mohsen, Grunau, Christoph, Haeupler, Bernhard, Ilchi, Saeed, Rozhoň, Václav

论文摘要

本文介绍了有效的分布式算法,这些算法对于图形稀疏领域的许多基本问题: 我们提供了第一个确定性分布式算法,该算法在$ \ textrm {polylog}(n)$ rounds中计算超固定扳手的加权图。具体而言,我们的算法输出了一个跨度子图,只有$ n+o(n)$ edges,其中成对距离的最多为$ o(\ log n \; \ cdot \; 2^{o(\ log log^* n)})$。 我们提供了$ \ textrm {polylog}(n)$ - 圆形确定性分布式算法,该算法计算具有拉伸$(2K-1)$和$ O(NK + N^{1 + 1 + 1/k} \ log k)$ edges nif wepracy Graphs,并使用$ O(NK + 1 + 1/k} \ log K)$ edge的扳手(nk + n^{1 + n^{1 + 1/k} \ log k)$ edge,并使用$ O(N^{1 + 1 + 1 + 1/k} k)$ edges complate frofforgs comptive。 我们介绍了第一个$ \ textrm {polylog}(n)$ - 圆形随机分布式算法,该算法计算稀疏连接证书。对于$ n $ node Graph $ g $,连接性$ k $的证书是跨度子图$ h $,当时是$ k $ - edge-edgeented,并且仅当$ g $为$ k $ - edge-edge-ennected时,此子级$ h $在具有$ o(nk)$ edges时被称为稀疏。我们的算法达到了$(1 + o(1))NK $边缘的稀疏性,该边缘在$ 2(1 + O(1))$最佳因素之内。

This paper presents efficient distributed algorithms for a number of fundamental problems in the area of graph sparsification: We provide the first deterministic distributed algorithm that computes an ultra-sparse spanner in $\textrm{polylog}(n)$ rounds in weighted graphs. Concretely, our algorithm outputs a spanning subgraph with only $n+o(n)$ edges in which the pairwise distances are stretched by a factor of at most $O(\log n \;\cdot\; 2^{O(\log^* n)})$. We provide a $\textrm{polylog}(n)$-round deterministic distributed algorithm that computes a spanner with stretch $(2k-1)$ and $O(nk + n^{1 + 1/k} \log k)$ edges in unweighted graphs and with $O(n^{1 + 1/k} k)$ edges in weighted graphs. We present the first $\textrm{polylog}(n)$-round randomized distributed algorithm that computes a sparse connectivity certificate. For an $n$-node graph $G$, a certificate for connectivity $k$ is a spanning subgraph $H$ that is $k$-edge-connected if and only if $G$ is $k$-edge-connected, and this subgraph $H$ is called sparse if it has $O(nk)$ edges. Our algorithm achieves a sparsity of $(1 + o(1))nk$ edges, which is within a $2(1 + o(1))$ factor of the best possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源