论文标题
高等扭转引力理论中的紧凑型恒星模型
Compact stellar model in higher torsion gravitational theory
论文作者
论文摘要
在这项研究中,我们解决了$ f \ Mathcal {(t)} = \ Mathcal {T}+ε\ Mathcal {T}^2 $重力理论的二次形式的二次形式的问题的问题,该问题是使用物理Tetrad提供的物理Tetrad提供了现场等式的分组器的消失组成部分,并且在现场等式中都存在。为了能够以封闭形式制定所得的微分方程,我们采用了Krori-Barua(KB)Ansatz。使用KB时空形式,我们得出了能量密度,径向和切向压力以及各向异性形式的分析形式。所有这些数量都受尺寸参数$ε$的影响,这导致它们与爱因斯坦一般相对性框架中给出的差异有所不同。这项研究的衍生模型表现出一种非平凡的扭转标量形式,它还包含三个常数,我们从边界条件与线元素的匹配中汲取了三个常数,该线元素还具有非平凡形式的扭转标量。建立了任何真正出色的物理条件后,我们检查了我们的模型并详细说明它绕过了所有这些。最后,我们利用Tolman-Oppenheimer-Volkoff方程和绝热指数分析了模型的稳定性,并表明我们的模型满足了这些索引。
In this study, we address the issue of a spherically symmetrical interior solution to the quadratic form of $f\mathcal{(T)}=\mathcal{T}+ε\mathcal{T}^2$ gravitational theory using a physical tetrad that provides vanishing components of the off-components of the field equation, in contrast to what exists in the current literature. To be able to formulate the resulting differential equation in a closed form, we employ the Krori-Barua (KB) ansatz. Using the KB spacetime form, we derive the analytic form of the energy-density, radial, and tangential pressures and the anisotropic form. All of these quantities are affected by the dimensional parameter $ε$, which causes them to have a noted difference from those given in the frame of Einstein general relativity. The derived model of this study exhibits a non-trivial form of torsion scalar, and it also contains three constants that we drew from the matching of the boundary condition with a line element that also features a non-trivial form of torsion scalar. Having established the physical conditions that are needed for any real stellar, we check our model and show in detail that it bypasses all of these. Finally, we analyze the model's stability utilizing the Tolman-Oppenheimer-Volkoff equation and adiabatic index and show that our model satisfies these.