论文标题
通过充分利用磁结构的非线性,两种巨大的铁磁铁的纠缠机械振动
Entangling mechanical vibrations of two massive ferrimagnets by fully exploiting the nonlinearity of magnetostriction
论文作者
论文摘要
宏观对象运动中的量子纠缠对基本研究和量子技术都有意义。在这里,我们展示了如何纠缠于两个放置在同一微波腔中的两个巨大铁磁体的机械振动模式。每个Ferrimagnet都支持磁通模式和通过磁刻度的低频振动模式。这两种磁化模式分别通过磁性偶极子相互作用耦合到微波腔。我们首先在Ferrimagnet-1的振动模式和Ferrimagnet-2的磁通模式之间生成固定的非本地纠缠状态。这是通过连续驱动Ferrimagnet-1具有强烈的红色微波磁场来实现的,并且通过利用宏伟的参数下转换和腔体 - 马格诺态 - 状态-SWAP相互作用来实现纠缠。然后,我们关闭Ferrimagnet-1上的泵,同时在Ferrimagnet-2上打开红色脉冲驱动器。后者驱动器用于激活宏伟的束弹奏仪的相互作用,该相互作用交换了Ferrimagnet-2的宏伟和机械状态。因此,先前生成的声子 - 马格农纠缠被转移到两个铁磁体的机械模式中。这项工作提供了一个计划,以准备两个大型物体的机械运动的纠缠状态,这可能会在利用宏观纠缠状态的各种研究中找到应用。
Quantum entanglement in the motion of macroscopic objects is of significance to both fundamental studies and quantum technologies. Here we show how to entangle the mechanical vibration modes of two massive ferrimagnets that are placed in the same microwave cavity. Each ferrimagnet supports a magnon mode and a low-frequency vibration mode coupled by the magnetostrictive force. The two magnon modes are, respectively, coupled to the microwave cavity by the magnetic dipole interaction. We first generate a stationary nonlocal entangled state between the vibration mode of the ferrimagnet-1 and the magnon mode of the ferrimagnet-2. This is realized by continuously driving the ferrimagnet-1 with a strong red-detuned microwave field and the entanglement is achieved by exploiting the magnomechanical parametric down-conversion and the cavity-magnon state-swap interaction. We then switch off the pump on the ferrimagnet-1 and, simultaneously, turn on a red-detuned pulsed drive on the ferrimagnet-2. The latter drive is used to activate the magnomechanical beamsplitter interaction, which swaps the magnonic and mechanical states of the ferrimagnet-2. Consequently, the previously generated phonon-magnon entanglement is transferred to the mechanical modes of two ferrimagnets. The work provides a scheme to prepare entangled states of mechanical motion of two massive objects, which may find applications in various studies exploiting macroscopic entangled states.