论文标题

多遭遇者Stackelberg安全游戏的强大解决方案

Robust Solutions for Multi-Defender Stackelberg Security Games

论文作者

Mutzari, Dolev, Aumann, Yonatan, Kraus, Sarit

论文摘要

多人赛车手Stackelberg Security Games(MSSG)最近在文献中引起了人们的关注。但是,迄今为止提供的解决方案非常敏感,即使在攻击者的效用或轻微的不确定性中,即使是少量扰动也可以极大地改变后卫的回报并改变平衡。在本文中,我们为MSSG介绍了一个强大的模型,该模型承认了对游戏参数中对小扰动或不确定性有抵抗力的解决方案。首先,我们正式定义了鲁棒性的概念以及鲁棒的MSSG模型。然后,对于非合件设置,我们证明在任何此类游戏中都存在稳健的近似平衡,并提供了有效的结构。对于合作环境,我们表明,任何此类游戏都承认一个强大的近似Alpha核心,提供了有效的结构,并证明了更强大的核心类型可能是空的。有趣的是,强大的解决方案可以大大提高捍卫者的公用事业,而不是非凡的实用程序。

Multi-defender Stackelberg Security Games (MSSG) have recently gained increasing attention in the literature. However, the solutions offered to date are highly sensitive, wherein even small perturbations in the attacker's utility or slight uncertainties thereof can dramatically change the defenders' resulting payoffs and alter the equilibrium. In this paper, we introduce a robust model for MSSGs, which admits solutions that are resistant to small perturbations or uncertainties in the game's parameters. First, we formally define the notion of robustness, as well as the robust MSSG model. Then, for the non-cooperative setting, we prove the existence of a robust approximate equilibrium in any such game, and provide an efficient construction thereof. For the cooperative setting, we show that any such game admits a robust approximate alpha-core, provide an efficient construction thereof, and prove that stronger types of the core may be empty. Interestingly, the robust solutions can substantially increase the defenders' utilities over those of the non-robust ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源