论文标题
深度学习系统量身定制的不确定性估计
Tailored Uncertainty Estimation for Deep Learning Systems
论文作者
论文摘要
不确定性估计具有使深度学习(DL)系统更可靠的潜力。但是,不确定性估计的标准技术与优势和劣势的特定组合有关,例如,关于估计质量,概括能力和计算复杂性。为了实际利用不确定性量化的潜力,需要估算属性,其属性与给定用例的要求非常匹配。在这项工作中,我们提出了一个框架,该框架首先结构并塑造这些要求,其次,指导选择合适的不确定性估计方法,第三,提供了验证这种选择并发现结构弱点的策略。通过从这种意义上贡献量身定制的不确定性估计,我们的框架有助于促进值得信赖的DL系统。此外,它预期了前瞻性机器学习法规,例如在欧盟中,这证明了机器学习系统技术适用性的证据。我们的框架为系统组件建模不确定性提供了这样的证据。
Uncertainty estimation bears the potential to make deep learning (DL) systems more reliable. Standard techniques for uncertainty estimation, however, come along with specific combinations of strengths and weaknesses, e.g., with respect to estimation quality, generalization abilities and computational complexity. To actually harness the potential of uncertainty quantification, estimators are required whose properties closely match the requirements of a given use case. In this work, we propose a framework that, firstly, structures and shapes these requirements, secondly, guides the selection of a suitable uncertainty estimation method and, thirdly, provides strategies to validate this choice and to uncover structural weaknesses. By contributing tailored uncertainty estimation in this sense, our framework helps to foster trustworthy DL systems. Moreover, it anticipates prospective machine learning regulations that require, e.g., in the EU, evidences for the technical appropriateness of machine learning systems. Our framework provides such evidences for system components modeling uncertainty.