论文标题

分子云形成期间的化学演化

Chemical evolution during the formation of molecular clouds

论文作者

Sun, Jingfei, Du, Fujun

论文摘要

为了研究分子云形成过程中的化学演化,我们对具有不同密度结构的三种类型的云进行建模:球形折叠,折叠椭圆形和静态球形曲线。在典型的分子云中,折叠模型比静态模型更好。这主要是因为重力可以加快一些重要分子(例如H $ _2 $,CO,OH)的形成,从而增加了崩溃过程中的数量密度。岩体,扁叶和球形云的不同形态导致化学演化的差异,这主要是由于它们数量密度的不同演变所致。我们还研究了初始化学成分对化学演化的影响,并发现H原子可以通过两个主要反应加速OH的形成:O + H $ \ rightarrow $ OH在气相和灰尘粒表面上,导致氢与最初是更好的观测值的模型,而氢比氢是氢是分子最初的模型。也就是说,要匹配观测值,最初必须主要是原子质。即使没有h $ _2 $的先前存在,CO分子也能够形成。我们还研究气体温度,尘埃温度,星际辐射场的强度和宇宙射线电离速率对静态云中化学演化的影响。由于迅速的CO破坏,具有高灰尘温度,强辐射场和强化宇宙射线的静态CO云是短暂的。

To study the chemical evolution during the formation of molecular clouds, we model three types of clouds with different density structures: collapsing spherical, collapsing ellipsoidal, and static spherical profiles. The collapsing models are better than the static models in matching the observational characteristics in typical molecular clouds. This is mainly because the gravity can speed up the formation of some important molecules (e.g., H$_2$, CO, OH) by increasing the number density during collapse. The different morphologies of prolate, oblate, and spherical clouds lead to differences in chemical evolution, which are mainly due to their different evolution of number density. We also study the effect of initial chemical compositions on chemical evolution, and find that H atoms can accelerate OH formation by two major reactions: O + H $\rightarrow$ OH in gas phase and on dust grain surfaces, leading to the models in which hydrogen is mainly atomic initially better match observations than the models in which hydrogen is mainly molecular initially. Namely, to match observations, initially hydrogen must be mostly atomic. The CO molecules are able to form even without the pre-existence of H$_2$. We also study the influence of gas temperature, dust temperature, intensity of interstellar radiation field and cosmic-ray ionization rate on chemical evolution in static clouds. The static CO clouds with high dust temperature, strong radiation field, and intensive cosmic rays are transient due to rapid CO destruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源