论文标题
Orthorhombic HF $ _ {0.5} $ zr $ _ {0.5} $ o $ _2 $ _2 $/sio $ _2 $ _2 $ _2 $/si Gate stack stack inorthorhombic hf $ _ {0.5} $ zr $ _ {0.5} $ zr $ _ {0.5} $ zr $ _ {0.5}
First-principles study of oxygen vacancy defects in orthorhombic Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_2$/Si gate stack
论文作者
论文摘要
铁电HFO $ _2 $的SI场效应晶体管(SI FEFET)的门缺陷在其可靠性问题中起着重要作用。第一原理计算是一种原子尺度理解门缺陷的有效方法。但是,到目前为止,尚未报道过关于Fefet Gate堆栈缺陷的第一原理研究,即金属/Orthorhombic-Hf $ _ {0.5} $ Zr $ _ {0.5} $ _2 $ $ _2 $/SIO $ _2 $/SI结构,尚未报道。关键挑战是构建金属/Orthorhombic-Hf $ _ {0.5} $ ZR $ _ {0.5} $ o $ $ $ _2 $/SIO $ _2 $ _2 $/SI GATE堆栈模型。在这里,我们使用hf $ _ {0.5} $ zr $ _ {0.5} $ o $ _2 $(130)高点晶体面孔作为正晶的铁电层,并构建了一个可靠的原子结构门堆栈没有任何间隙状态。它的高结构稳定性归因于绝缘界面。计算出的频带偏移表明,该栅极结构是I型频带对齐。此外,与其他缺陷相比,与其他缺陷相比,缺陷的形成能和电荷过渡水平(CTL)表明,氧空位缺陷更有利地形成,例如氧气间隙和HF/ZR空位,其CTL与SI传导频带最小和Valence Band brance Brance Brimim in Record corse Reforce comped corportimens corporife comportimentife rescore comperiorse comperiority comperiortim cornemential ctls的CTL主要位于本地位置。氧空位缺陷负责SI FEFET中的电荷捕获/DE捕获行为。这项工作提供了有关门缺陷的洞察力,并铺平了对铁电HFO $ _2 $ _2 $的SI FEFET进行第一原理研究的方式。
The gate defect of the ferroelectric HfO$_2$-based Si field-effect transistor (Si FeFET) plays a dominant role in its reliability issue. The first-principles calculations are an effective method for the atomic-scale understanding of gate defects. However, the first-principles study on the defects of FeFET gate stacks, i.e., metal/orthorhombic-Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_2$/Si structure, has not been reported so far. The key challenge is the construction of metal/orthorhombic-Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_2$/Si gate stack models. Here, we use the Hf$_{0.5}$Zr$_{0.5}$O$_2$(130) high-index crystal face as the orthorhombic ferroelectric layer and construct a robust atomic structure of the orthorhombic-Hf$_{0.5}$Zr$_{0.5}$O$_2$/SiO$_2$/Si gate stack without any gap states. Its high structural stability is ascribed to the insulated interface. The calculated band offsets show that this gate structure is of the type-I band alignment. Furthermore, the formation energies and charge transition levels (CTLs) of defects reveal that the oxygen vacancy defects are more favorable to form compared with other defects such as oxygen interstitial and Hf/Zr vacancy, and their CTLs are mainly localized near the Si conduction band minimum and valence band maximum, in agreement with the reported experimental results. The oxygen vacancy defects are responsible for charge trapping/de-trapping behavior in Si FeFET. This work provides an insight into gate defects and paves the way to carry out the first-principles study of ferroelectric HfO$_2$-based Si FeFET.