论文标题
降噪的注意力融合学习变压器用于骨肉瘤的组织学图像分类
Noise-reducing attention cross fusion learning transformer for histological image classification of osteosarcoma
论文作者
论文摘要
骨肉瘤的恶性肿瘤及其转移/扩散的趋势主要取决于病理等级(通过观察显微镜下肿瘤的形态确定)。这项研究的目的是使用人工智能对骨肉瘤组织学图像进行分类,并评估肿瘤存活和坏死,这将帮助医生减少工作量,提高骨肉瘤癌症检测的准确性,并为患者提供更好的预后。该研究提出了一个典型的变压器图像分类框架,通过整合降低噪声卷积自动编码器和特征交叉融合学习(NRCA-FCFL)来对骨肉瘤组织学图像进行分类。降噪卷积自动编码器可以很好地确定骨肉瘤的组织学图像,从而为骨肉瘤分类提供更多纯图像。此外,我们介绍了特征交叉融合学习,该学习集成了两个比例图像补丁,以通过使用其他分类令牌充分探索它们的相互作用。结果,生成了精制的融合功能,该特征被馈送到残留神经网络以进行标签预测。我们进行了广泛的实验,以评估所提出的方法的性能。实验结果表明,我们的方法的表现优于各种评估指标的传统和深度学习方法,精度为99.17%,以支持骨肉瘤诊断。
The degree of malignancy of osteosarcoma and its tendency to metastasize/spread mainly depend on the pathological grade (determined by observing the morphology of the tumor under a microscope). The purpose of this study is to use artificial intelligence to classify osteosarcoma histological images and to assess tumor survival and necrosis, which will help doctors reduce their workload, improve the accuracy of osteosarcoma cancer detection, and make a better prognosis for patients. The study proposes a typical transformer image classification framework by integrating noise reduction convolutional autoencoder and feature cross fusion learning (NRCA-FCFL) to classify osteosarcoma histological images. Noise reduction convolutional autoencoder could well denoise histological images of osteosarcoma, resulting in more pure images for osteosarcoma classification. Moreover, we introduce feature cross fusion learning, which integrates two scale image patches, to sufficiently explore their interactions by using additional classification tokens. As a result, a refined fusion feature is generated, which is fed to the residual neural network for label predictions. We conduct extensive experiments to evaluate the performance of the proposed approach. The experimental results demonstrate that our method outperforms the traditional and deep learning approaches on various evaluation metrics, with an accuracy of 99.17% to support osteosarcoma diagnosis.