论文标题
几何视角:量子cramer-rao结合的实验评估
A geometric perspective: experimental evaluation of the quantum Cramer-Rao bound
论文作者
论文摘要
量子传感的功率取决于其最终的精度极限,该量子由量子cramer-rao结合(QCRB)量化,该量子可以超越经典的边界。在多参数估计中,QCRB并不总是饱和,因为相关可观察物的量子性质可能导致其不兼容。在这里,我们通过量子几何形状的镜头探索了多参数估计的精确限制,从而使我们能够通过量子几何测量来实验地评估QCRB。我们侧重于两参数估计,我们阐明了基本量子不确定性原理如何阻止结合的饱和。通过将“量子”的度量与系统的几何特性联系起来,我们研究并实验提取可实现的QCRB以进行三参数估计。
The power of quantum sensing rests on its ultimate precision limit, quantified by the quantum Cramer-Rao bound (QCRB), which can surpass classical bounds. In multi-parameter estimation, the QCRB is not always saturated as the quantum nature of associated observables may lead to their incompatibility. Here we explore the precision limits of multi-parameter estimation through the lens of quantum geometry, enabling us to experimentally evaluate the QCRB via quantum geometry measurements. Focusing on two- and three-parameter estimation, we elucidate how fundamental quantum uncertainty principles prevent the saturation of the bound. By linking a metric of "quantumness" to the system geometric properties, we investigate and experimentally extract the attainable QCRB for three-parameter estimations.