论文标题

CKH:用于估算数据和先验的结构因果模型的因果知识层次结构

CKH: Causal Knowledge Hierarchy for Estimating Structural Causal Models from Data and Priors

论文作者

Adib, Riddhiman, Naved, Md Mobasshir Arshed, Fang, Chih-Hao, Gani, Md Osman, Grama, Ananth, Griffin, Paul, Ahamed, Sheikh Iqbal, Adibuzzaman, Mohammad

论文摘要

结构性因果模型(SCM)提供了一种原则性的方法,可以从经济学到医学的学科中的观察和实验数据中识别因果关系。但是,通常表示为图形模型的SCM不仅可以依靠数据,而要支持域知识的支持。在这种情况下,一个关键的挑战是缺乏以系统的方式将先验(背景知识)编码为因果模型的方法学框架。我们提出了一个称为因果知识层次结构(CKH)的抽象,用于将先验编码为因果模型。我们的方法基于医学中“证据水平”的基础,重点是对因果信息的信心。使用CKH,我们提出了一个方法学框架,用于编码来自各种信息源的因果先验并将其组合以得出SCM。我们在模拟数据集上评估了我们的方法,并通过敏感性分析与地面真实因果模型相比证明了整体性能。

Structural causal models (SCMs) provide a principled approach to identifying causation from observational and experimental data in disciplines ranging from economics to medicine. However, SCMs, which is typically represented as graphical models, cannot rely only on data, rather require support of domain knowledge. A key challenge in this context is the absence of a methodological framework for encoding priors (background knowledge) into causal models in a systematic manner. We propose an abstraction called causal knowledge hierarchy (CKH) for encoding priors into causal models. Our approach is based on the foundation of "levels of evidence" in medicine, with a focus on confidence in causal information. Using CKH, we present a methodological framework for encoding causal priors from various information sources and combining them to derive an SCM. We evaluate our approach on a simulated dataset and demonstrate overall performance compared to the ground truth causal model with sensitivity analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源