论文标题

关于准无限划分定律的弱收敛性

On weak convergence of quasi-infinitely divisible laws

论文作者

Khartov, A. A.

论文摘要

我们研究了一类新的所谓准准法律法律,这是通过lévy-khinchine-khinchine类型表示的无限分裂定律的广泛自然扩展。我们对此类融合薄弱的标准感兴趣。在相当自然的假设下,我们指出的断言将准绝对可划分的分布函数与lévy-khinchine频谱函数的一种特殊类型的收敛性联系在一起。后一种收敛不等于弱收敛性。因此,我们补充了Lindner,Pan和Sato(2018)在该领域的已知结果。

We study a new class of so-called quasi-infinitely divisible laws, which is a wide natural extension of the well known class of infinitely divisible laws through the Lévy--Khinchine type representations. We are interested in criteria of weak convergence within this class. Under rather natural assumptions, we state assertions, which connect a weak convergence of quasi-infinitely divisible distribution functions with one special type of convergence of their Lévy--Khinchine spectral functions. The latter convergence is not equivalent to the weak convergence. So we complement known results by Lindner, Pan, and Sato (2018) in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源