论文标题

Wasserstein收敛,用于在Riemannian歧管上的下属Dirichlet扩散的条件经验度量

Wasserstein Convergence for Conditional Empirical Measures of Subordinated Dirichlet Diffusions on Riemannian Manifolds

论文作者

Li, Huaiqian, Wu, Bingyao

论文摘要

经验措施的渐近行为有很多研究。但是,对条件经验措施的研究是有限的。在王\ cite {ew1}的发展下,在二次瓦斯汀距离下,我们研究了与属于dirichlet扩散过程相关的条件经验措施的收敛速率,这些量子与吸收边界相关的紧凑型riemannian歧管上。我们给出任何初始分布的收敛速度,并证明了大型初始分布的精确限制。我们遵循王的基本思想,但要使自己在证据中造成重大偏差,以克服我们的非本地环境中的困难。

The asymptotic behaviour of empirical measures has plenty of studies. However, the research on conditional empirical measures is limited. Being the development of Wang \cite{eW1}, under the quadratic Wasserstein distance, we investigate the rate of convergence of conditional empirical measures associated to subordinated Dirichlet diffusion processes on a connected compact Riemannian manifold with absorbing boundary. We give the sharp rate of convergence for any initial distribution and prove the precise limit for a large class of initial distributions. We follow the basic idea of Wang, but allow ourselves substantial deviations in the proof to overcome difficulties in our non-local setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源