论文标题
$ p $ harmonic函数的全球二阶Sobolev-regulactions
Global second order Sobolev-regularity of $p$-harmonic functions
论文作者
论文摘要
我们证明了经典结果的全局版本,即$ p $ -Harmonic函数属于$ w^{2,2} _ {loc} $,对于$ 1 <p <3+ \ frac {2} {n-2} $。证明依赖于Cordes的矩阵不平等[7]以及Cianchi和Maz'ya [5,6]的技术。
We prove a global version of the classical result that $p$-harmonic functions belong to $W^{2,2}_{loc}$ for $1<p<3+\frac{2}{n-2}$. The proof relies on Cordes' matrix inequalities [7] and techniques from the work of Cianchi and Maz'ya [5,6].