论文标题

围绕希尔伯特类多项式的支持问题

Around the support problem for Hilbert class polynomials

论文作者

Campagna, Francesco, Dill, Gabriel Andreas

论文摘要

令$ h_d(t)$表示判别$ d $的假想二次序列的希尔伯特类多项式。我们研究了$ h_d(a)$和$ h_d(b)$ as $ | d |的最大共同分裂的增长率\ to \ for $ a $和$ b $属于各种dedekind域。我们还研究了模块化支持问题:如果除了有限的$ d $几乎有限的每个主要理想划分$ h_d(a)$也将$ h_d(b)$划分,我们对$ a $ a和$ b $怎么说?如果我们用$ t^n-1 $替换$ h_d(t)$,而Dedekind域则是某个数字字段中$ s $ integers的戒指,那么这些是Bugeaud-Corvaja-Zannier,corvaja-Zannier,Corvaja-Zannier和Corrales-Rodrigáñeez-Schoof进行了调查的经典问题。

Let $H_D(T)$ denote the Hilbert class polynomial of the imaginary quadratic order of discriminant $D$. We study the rate of growth of the greatest common divisor of $H_D(a)$ and $H_D(b)$ as $|D| \to \infty$ for $a$ and $b$ belonging to various Dedekind domains. We also study the modular support problem: if for all but finitely many $D$ every prime ideal dividing $H_D(a)$ also divides $H_D(b)$, what can we say about $a$ and $b$? If we replace $H_D(T)$ by $T^n-1$ and the Dedekind domain is a ring of $S$-integers in some number field, then these are classical questions that have been investigated by Bugeaud-Corvaja-Zannier, Corvaja-Zannier, and Corrales-Rodrigáñez-Schoof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源