论文标题
纳米级金属中的超低电子表面散射,利用费米表面各向异性
Ultralow Electron-Surface Scattering in Nanoscale Metals Leveraging Fermi Surface Anisotropy
论文作者
论文摘要
金属电线随着纳米级尺寸的降低是半导体计算技术的主要性能瓶颈。我们表明,具有适当各向异性费米速度分布的金属可以强烈抑制表面上的电子散射,并且在纳米级电线中的铜等各向同性导体(例如铜)。我们为各向异性导体的电阻率缩放,使用该描述符的第一原理计算筛选数千个金属,并确定纳米级互连的最有希望的材料。先前提出的分层导体(例如最大相和德拉非塞人)在薄膜中显示出希望,但由于侧壁散射增加而不会在狭窄的电线中显示出希望。我们发现,某些具有一维各向异性费米速度的金属间(尤其是COSN)和硼化物(例如yco $ _3 $ b $ _2 $)对于窄线来说是最有希望的。结合第一原理电子散射预测,我们表明,在5 nm电线尺寸下,提出的材料比铜低2-3倍。
Increasing resistivity of metal wires with reducing nanoscale dimensions is a major performance bottleneck of semiconductor computing technologies. We show that metals with suitably anisotropic Fermi velocity distributions can strongly suppress electron scattering by surfaces and outperform isotropic conductors such as copper in nanoscale wires. We derive a corresponding descriptor for the resistivity scaling of anisotropic conductors, screen thousands of metals using first-principles calculations of this descriptor and identify the most promising materials for nanoscale interconnects. Previously-proposed layered conductors such as MAX phases and delafossites show promise in thin films, but not in narrow wires due to increased scattering from side walls. We find that certain intermetallics (notably CoSn) and borides (such as YCo$_3$B$_2$) with one-dimensionally anisotropic Fermi velocities are most promising for narrow wires. Combined with first-principles electron-phonon scattering predictions, we show that the proposed materials exhibit 2-3x lower resistivity than copper at 5 nm wire dimensions.