论文标题
欧拉和拉格朗日坐标中均质各向同性湍流的相关函数和线性响应函数
Correlation function and linear response function of homogeneous isotropic turbulence in the Eulerian and Lagrangian coordinates
论文作者
论文摘要
我们研究了通过直接数值模拟(DNS)的统计稳态,均质和各向同性湍流的速度傅立叶级别,均匀和各向同性湍流的相关函数和平均线性响应函数。作为拉格朗日速度,我们在这里采用了克拉希南的拉格朗日历史框架,在该框架中,拉格朗日颗粒标有当前位置,并且在某个时候测量了它们的速度。该Lagrangian速度是用一种称为被动矢量方法的方法计算得出的。我们的第一个目标是研究欧拉和拉格朗日坐标中相关函数与平均线性响应函数之间的关系。已知这种关系对于分析两个函数的闭合方程组很重要,这是通过直接相互作用 - 敏感类型封闭获得的。我们从数值上证明了波动 - 散落定理(两个函数之间的比例)不存在。在随机设置下平均线性响应函数的一般分析表达式进一步研究,这被称为非平衡统计力学中的波动反应关系。我们的第二个目标是确定与两个功能相关的特征时间,并比较欧拉和拉格朗日坐标之间的时间。我们的DNS结果支持了一个共同的观点,即欧拉的特征时间具有较大的时间缩放($ \ propto k^{ - 1} $,其中$ k $是waveNumber的功能和惯性范围内的Lagrangian特征时间具有kolmogorov时间缩放($ \ propt k^k^{-2/3} $)。
We study the correlation function and mean linear response function of the velocity Fourier mode of statistically steady-state, homogeneous and isotropic turbulence in the Eulerian and Lagrangian coordinates through direct numerical simulation (DNS). As the Lagrangian velocity, we here adopt Kraichnan's Lagrangian history framework where Lagrangian particles are labelled with current positions and their velocity are measured at some time before. This Lagrangian velocity is numerically calculated with a method known as passive vector method. Our first goal is to study relation between the correlation function and the mean linear response function in the Eulerian and Lagrangian coordinates. Such a relation is known to be important in analysing the closed set of equations for the two functions, which are obtained by direct-interaction-approximation type closures. We demonstrate numerically that the fluctuation-dissipation theorem (proportionality between the two functions) does not hold. The relation is further investigated with general analytical expressions of the mean linear response function under stochastic settings, which are known as the fluctuation-response relations in non-equilibrium statistical mechanics. Our second goal is to identify characteristic times associated with the two functions and to compare the times between the Eulerian and Lagrangian coordinates. Our DNS result supports the common view that the Eulerian characteristic times have the sweeping-time scaling ($\propto k^{-1}$, where $k$ is the wavenumber) for both functions and the Lagrangian characteristic times in the inertial range have the Kolmogorov-time scaling ($\propto k^{-2/3}$) for both functions.