论文标题

AE-NERF:3D感知物体操纵的自动编码神经辐射场

AE-NeRF: Auto-Encoding Neural Radiance Fields for 3D-Aware Object Manipulation

论文作者

Kim, Mira, Ko, Jaehoon, Cho, Kyusun, Choi, Junmyeong, Choi, Daewon, Kim, Seungryong

论文摘要

我们为3D感知对象操作提出了一个新型框架,称为自动编码神经辐射场(AE-NERF)。我们的模型是在自动编码器体系结构中配制的,它提取了图像中脱离的3D属性,例如3D形状,外观和摄像头姿势,并通过dentanged生成神经辐射场(NERF)从属性中呈现出高质量的图像。为了提高分离能力,我们提出了两种损失,全球属性属性一致性损失在输入和输出之间定义,以及交换 - 分类分类损失。由于从头开始训练此类自动编码网络而没有地面形状和外观信息,因此我们提出了阶段训练方案,这极大地有助于提高性能。我们进行实验,以证明拟议模型对最新方法的有效性,并提供广泛的消融研究。

We propose a novel framework for 3D-aware object manipulation, called Auto-Encoding Neural Radiance Fields (AE-NeRF). Our model, which is formulated in an auto-encoder architecture, extracts disentangled 3D attributes such as 3D shape, appearance, and camera pose from an image, and a high-quality image is rendered from the attributes through disentangled generative Neural Radiance Fields (NeRF). To improve the disentanglement ability, we present two losses, global-local attribute consistency loss defined between input and output, and swapped-attribute classification loss. Since training such auto-encoding networks from scratch without ground-truth shape and appearance information is non-trivial, we present a stage-wise training scheme, which dramatically helps to boost the performance. We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源