论文标题

探索异常模型输入和输出警报如何影响医疗保健的决策

Exploring How Anomalous Model Input and Output Alerts Affect Decision-Making in Healthcare

论文作者

Radensky, Marissa, Burson, Dustin, Bhaiya, Rajya, Weld, Daniel S.

论文摘要

人类互动领域的一个重要目标是帮助用户更适当地信任AI系统的决策。用户可能会特别受益于更合适的信任的情况是当AI接收异常输入或提供异常输出时。据我们所知,这是理解异常警报如何有助于AI的适当信任的第一项工作。在与4位放射科医生和其他4位医生的形成性混合方法研究中,我们探讨了AI如何提醒异常输入,非常高和低的信心以及异常的显着映射解释会影响用户对AI临床临床决策系统(CDS)的模型的经验,以评估Pneumonia的胸部X射线。我们发现的证据表明,非视角学家需要四个异常警报,而放射科医生和非放射科医生都需要高信心警报。在一项后续用户研究中,我们研究了33位使用AI CDSS模型工作的33位放射科医生对准确性和适当信任的高度和低信心警报的影响。我们观察到,这些警报不会提高用户的准确性或经验,并讨论原因的潜在原因。

An important goal in the field of human-AI interaction is to help users more appropriately trust AI systems' decisions. A situation in which the user may particularly benefit from more appropriate trust is when the AI receives anomalous input or provides anomalous output. To the best of our knowledge, this is the first work towards understanding how anomaly alerts may contribute to appropriate trust of AI. In a formative mixed-methods study with 4 radiologists and 4 other physicians, we explore how AI alerts for anomalous input, very high and low confidence, and anomalous saliency-map explanations affect users' experience with mockups of an AI clinical decision support system (CDSS) for evaluating chest x-rays for pneumonia. We find evidence suggesting that the four anomaly alerts are desired by non-radiologists, and the high-confidence alerts are desired by both radiologists and non-radiologists. In a follow-up user study, we investigate how high- and low-confidence alerts affect the accuracy and thus appropriate trust of 33 radiologists working with AI CDSS mockups. We observe that these alerts do not improve users' accuracy or experience and discuss potential reasons why.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源