论文标题

用于建模多相复合材料变形的虚拟元素方法

Virtual element method for modeling the deformation of multiphase composites

论文作者

Sukumar, N., Bolander, John E.

论文摘要

在本文中,我们研究了虚拟元素方法(VEM)的应用,以模拟多相复合材料的变形。 VEM是一种适用于由任意形状的多边形和多面体(简单和非单词)元素组成的网格的galerkin方法。在VEM中,基本函数被定义为局部椭圆偏微分方程的解决方案,并且从未在该方法的实现中明确计算。每个元素的Stifness矩阵是通过使用内部虚拟工作(双线性形式)的椭圆形投影操作员构建的,它由两个术语组成:一致性术语,该术语精确地计算出来(满足线性贴剂测试),并且校正项(确保稳定性)(确保稳定性)是正交对亲和位移字段的正交性,并且具有正确的尺度。 VEM简化了多相复合材料的网格生成:可以使用单个多边形或多面体元件对刚性包容进行建模。虚拟元素方法的属性通过与Voronoi-Cell晶格模型的比较来突出显示,该模型提供了材料结构的离散表示。比较涉及二维线性弹性问题的套件:贴片测试,轴对称圆形包含问题以及三相复合材料的变形。模拟证明了虚拟元素方法的准确性和灵活性。

In this paper, we study applications of the virtual element method (VEM) for simulating the deformation of multiphase composites. The VEM is a Galerkin approach that is applicable to meshes that consist of arbitrarily-shaped polygonal and polyhedral (simple and nonsimple) elements. In the VEM, the basis functions are defined as the solution of a local elliptic partial differential equation, and are never explicitly computed in the implementation of the method. The stifness matrix of each element is built by using the elliptic projection operator of the internal virtual work (bilinear form) and it consists of two terms: a consistency term that is exactly computed (linear patch test is satisfied) and a correction term (ensures stability) that is orthogonal to affine displacement fields and has the right scaling. The VEM simplifies mesh generation for a multiphase composite: a stiff inclusion can be modeled using a single polygonal or polyhedral element. Attributes of the virtual element approach are highlighted through comparisons with Voronoi-cell lattice models, which provide discrete representations of material structure. The comparisons involve a suite of two-dimensional linear elastic problems: patch test, axisymmetric circular inclusion problem, and the deformation of a three-phase composite. The simulations demonstrate the accuracy and flexibility of the virtual element method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源