论文标题
泰勒的磁流失动力湍流和太阳风的冻结假设
Taylor's Frozen-in Hypothesis for Magnetohydrodynamic turbulence and Solar Wind
论文作者
论文摘要
在流体动力学中,泰勒的冷冻假设将波数谱与在真实空间中测得的时间序列的频谱联系起来。在本文中,我们将泰勒的假设推广到磁流失动力动力湍流。我们在分析中得出Elsässer变量的单点两次相关函数,其傅立叶变换产生相应的频谱,$ e^\ pm(f)$。我们表明,$ e^\ pm(f)\ propto | {\ bf u} _0 \ mp {\ bf b} _0 |^{2/3} $ in Kolmogorov-like模型和$ e^\ pm(f) b} _0 |)^{1/2} $在iroshnikov-kraichnan模型中,其中$ {\ bf u} _0,{\ bf b} _0 $分别是平均速度和平均磁场。
In hydrodynamics, Taylor's frozen-in hypothesis connects the wavenumber spectrum to the frequency spectrum of a time series measured in real space. In this paper, we generalize Taylor's hypothesis to magnetohydrodynamic turbulence. We analytically derive one-point two-time correlation functions for Elsässer variables whose Fourier transform yields the corresponding frequency spectra, $ E^\pm(f) $. We show that $ E^\pm(f) \propto |{\bf U}_0 \mp {\bf B}_0|^{2/3} $ in Kolmogorov-like model, and $ E^\pm(f) \propto (B_0 |{\bf U}_0 \mp {\bf B}_0|)^{1/2} $ in Iroshnikov-Kraichnan model, where $ {\bf U}_0, {\bf B}_0$ are the mean velocity and mean magnetic fields respectively.