论文标题
学习与时间相关的部分微分方程相关的Green的功能
Learning Green's functions associated with time-dependent partial differential equations
论文作者
论文摘要
神经操作员是科学机器学习中一种流行的技术,可以从数据中学习未知物理系统行为的数学模型。神经操作员对于学习与局部微分方程(PDE)相关的解决方案操作员特别有用,当数值求解器不可用或对基础物理学的理解很少了解时,强迫函数和解决方案对局部差分方程(PDE)特别有用。在这项工作中,我们试图提供理论基础,以了解学习时间依赖性PDE所需的培训数据量。给定的输入输出对来自抛物线PDE的任何空间尺寸$ n \ geq 1 $,我们得出了学习相关解决方案运算符的第一个理论上严格的方案,该方案采取了带有绿色功能$ g $的卷积的形式。到目前为止,严格地学习与时间相关PDE相关的Green的功能一直是科学机器学习领域的主要挑战,因为当$ g $ $ g $ $ n> 1 $时,并且与时间相关的PDE具有短暂的动力学。通过将$ g $的层次低排列结构与随机数字线性代数结合在一起,我们构建了$ g $的大约构建,可实现$ \ smash {\ mathcal {\ smash {O}(γ________________________)的相对误差。 $ \ smash {\ Mathcal {o}(ε^{ - \ frac {n+2} {2}}} \ log(1/ε))} $ input-out-output训练对,其中$γ_ε$是学习$ g $的训练数据集质量的衡量,$ g $ $ g $,以及$ g $> 0 $ 0 $。
Neural operators are a popular technique in scientific machine learning to learn a mathematical model of the behavior of unknown physical systems from data. Neural operators are especially useful to learn solution operators associated with partial differential equations (PDEs) from pairs of forcing functions and solutions when numerical solvers are not available or the underlying physics is poorly understood. In this work, we attempt to provide theoretical foundations to understand the amount of training data needed to learn time-dependent PDEs. Given input-output pairs from a parabolic PDE in any spatial dimension $n\geq 1$, we derive the first theoretically rigorous scheme for learning the associated solution operator, which takes the form of a convolution with a Green's function $G$. Until now, rigorously learning Green's functions associated with time-dependent PDEs has been a major challenge in the field of scientific machine learning because $G$ may not be square-integrable when $n>1$, and time-dependent PDEs have transient dynamics. By combining the hierarchical low-rank structure of $G$ together with randomized numerical linear algebra, we construct an approximant to $G$ that achieves a relative error of $\smash{\mathcal{O}(Γ_ε^{-1/2}ε)}$ in the $L^1$-norm with high probability by using at most $\smash{\mathcal{O}(ε^{-\frac{n+2}{2}}\log(1/ε))}$ input-output training pairs, where $Γ_ε$ is a measure of the quality of the training dataset for learning $G$, and $ε>0$ is sufficiently small.