论文标题
用于衍生非线性schr {Ö} dinger方程的多岩体的不稳定性
Instability of Multi-Solitons for Derivative Nonlinear Schr{ö}dinger Equations
论文作者
论文摘要
在[19]和[26]中,作者证明了衍生物非线性schr {Ö} dinger方程的多solitons的稳定性。粗略地说,有限稳定的孤子的总和是稳定的。我们预测,如果有一个不稳定的单方,那么多苏利顿将不稳定。对于经典的非线性schr {Ö} dinger方程的[7]证明了这一预测。在本文中,我们通过使用量规变换的帮助,通过使用c {} te-le coz [7]的方法证明了衍生化非线性schr {Ö} dinger方程的预测。
In [19] and [26], the authors proved the stability of multi-solitons for derivative nonlinear Schr{ö}dinger equations. Roughly speaking, sum of finite stable solitons is stable. We predict that if there is one unstable solition then multi-soliton is unstable. This prediction is proved in [7] for classical nonlinear Schr{ö}dinger equations. In this paper, we proved this prediction for derivative nonlinear Schr{ö}dinger equations by using the method of C{ô}te-Le Coz [7] with the help of Gauge transformation.