论文标题
MM-TTA:3D语义分割的多模式测试时间适应
MM-TTA: Multi-Modal Test-Time Adaptation for 3D Semantic Segmentation
论文作者
论文摘要
最近出现了测试时间适应方法作为处理域移动的实用解决方案,而无需访问源域数据。在本文中,我们提出并探讨了3D语义分割的测试时间适应的新的多模式扩展。我们发现,直接应用现有方法通常会在测试时导致性能不稳定,因为多模式输入不被共同考虑。为了设计一个可以充分利用多模式的框架,在这种框架中,每种模式都为其他模式提供了正则化的自我探索信号,我们建议在模态内和跨模态内提出两个互补模块。首先,引入了模式内伪标记(Intra-pg),以通过汇总两个模型的信息,这些信息都在源数据上进行了预先训练,但在不同速度的目标数据上更新。其次,基于提出的一致性方案,模式间伪标签的细化(InterPR)可自适应从不同模态选择更可靠的伪标签。实验表明,我们的正则化伪标签在3D语义分割的许多多模式测试时间适应场景中产生稳定的自学习信号。访问我们的项目网站https://www.nec-labs.com/~mas/mmm-tta。
Test-time adaptation approaches have recently emerged as a practical solution for handling domain shift without access to the source domain data. In this paper, we propose and explore a new multi-modal extension of test-time adaptation for 3D semantic segmentation. We find that directly applying existing methods usually results in performance instability at test time because multi-modal input is not considered jointly. To design a framework that can take full advantage of multi-modality, where each modality provides regularized self-supervisory signals to other modalities, we propose two complementary modules within and across the modalities. First, Intra-modal Pseudolabel Generation (Intra-PG) is introduced to obtain reliable pseudo labels within each modality by aggregating information from two models that are both pre-trained on source data but updated with target data at different paces. Second, Inter-modal Pseudo-label Refinement (Inter-PR) adaptively selects more reliable pseudo labels from different modalities based on a proposed consistency scheme. Experiments demonstrate that our regularized pseudo labels produce stable self-learning signals in numerous multi-modal test-time adaptation scenarios for 3D semantic segmentation. Visit our project website at https://www.nec-labs.com/~mas/MM-TTA.