论文标题
使用条形图的运动学直接测量到银河中心的距离
A direct measurement of the distance to the Galactic center using the kinematics of bar stars
论文作者
论文摘要
到银河中心$ R_0 $的距离是理解银河系的基本参数,因为我们的星系观察到了我们以HeliePentric参考点进行的。 $ r_0 $的不确定性限制了我们对银河系的许多方面的了解,包括其总质量和其主要成分的相对质量,以及用于化学动力分析中使用的任何星星的轨道参数。虽然$ R_0 $的尺寸在一个世纪以来一直在改善,但在过去几年中,各种方法的测量仍然发现$ R_0 $的范围在$ 8.0 $ 8.0 $至$ 8.5 \,\ MATHRM {KPC} $之内。迄今为止,最精确的测量值必须假设SGR A $^*$在银河中心休息,情况并非如此。在本文中,我们在源自Apogee dr17的银河棒中使用恒星运动学的地图,而Gaia EDR3数据则以\ texttt {astronn}神经网络方法的光谱测量距离增强。这些地图清楚地显示了旋转速度$ v_t $的最小值和径向速度中的四极签名$ v_r $ v_r $,预期的是轨道上的恒星。从$ v_t $中的最低限度,我们测量$ r_0 = 8.23 \ pm 0.12 \,\ mathrm {kpc} $。我们使用银河系的现实$ n $体体模拟来验证我们的测量。我们进一步测量条的模式速度为$ω__\ MATHRM {BAR} = 40.08 \ PM1.78 \,\ Mathrm {Km \,S}^{ - 1} \ Mathrm {Kpc}^{-1} $。由于条形在磁盘中形成,因此其中心显然是bar+碟系统的重中心,因此我们的测量是迄今为止$ R_0 $的最强和准确的测量。
The distance to the Galactic center $R_0$ is a fundamental parameter for understanding the Milky Way, because all observations of our Galaxy are made from our heliocentric reference point. The uncertainty in $R_0$ limits our knowledge of many aspects of the Milky Way, including its total mass and the relative mass of its major components, and any orbital parameters of stars employed in chemo-dynamical analyses. While measurements of $R_0$ have been improving over a century, measurements in the past few years from a variety of methods still find a wide range of $R_0$ being somewhere within $8.0$ to $8.5\,\mathrm{kpc}$. The most precise measurements to date have to assume that Sgr A$^*$ is at rest at the Galactic center, which may not be the case. In this paper, we use maps of the kinematics of stars in the Galactic bar derived from APOGEE DR17 and Gaia EDR3 data augmented with spectro-photometric distances from the \texttt{astroNN} neural-network method. These maps clearly display the minimum in the rotational velocity $v_T$ and the quadrupolar signature in radial velocity $v_R$ expected for stars orbiting in a bar. From the minimum in $v_T$, we measure $R_0 = 8.23 \pm 0.12\,\mathrm{kpc}$. We validate our measurement using realistic $N$-body simulations of the Milky Way. We further measure the pattern speed of the bar to be $Ω_\mathrm{bar} = 40.08\pm1.78\,\mathrm{km\,s}^{-1}\mathrm{kpc}^{-1}$. Because the bar forms out of the disk, its center is manifestly the barycenter of the bar+disc system and our measurement is therefore the most robust and accurate measurement of $R_0$ to date.