论文标题
部分可观测时空混沌系统的无模型预测
Expanding the Latent Space of StyleGAN for Real Face Editing
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recently, a surge of face editing techniques have been proposed to employ the pretrained StyleGAN for semantic manipulation. To successfully edit a real image, one must first convert the input image into StyleGAN's latent variables. However, it is still challenging to find latent variables, which have the capacity for preserving the appearance of the input subject (e.g., identity, lighting, hairstyles) as well as enabling meaningful manipulations. In this paper, we present a method to expand the latent space of StyleGAN with additional content features to break down the trade-off between low-distortion and high-editability. Specifically, we proposed a two-branch model, where the style branch first tackles the entanglement issue by the sparse manipulation of latent codes, and the content branch then mitigates the distortion issue by leveraging the content and appearance details from the input image. We confirm the effectiveness of our method using extensive qualitative and quantitative experiments on real face editing and reconstruction tasks.