论文标题

对物联网入侵检测系统中联邦学习的综述

A review of Federated Learning in Intrusion Detection Systems for IoT

论文作者

Belenguer, Aitor, Navaridas, Javier, Pascual, Jose A.

论文摘要

入侵检测系统正在演变为智能系统,这些系统执行数据分析,以搜索其环境中的异常情况。深度学习技术的发展为建立更复杂和有效的威胁检测模型打开了大门。但是,在大多数物件设备的大多数互联网上,培训这些模型在计算上可能是不可行的。当前的方法取决于强大的集中式服务器,这些服务器接收来自所有各方的数据 - 违反了基本的隐私限制,并且由于巨大的沟通开销而导致的响应时间和运营成本实质上。为了减轻这些问题,联邦学习成为一种有前途的方法,在这种方法中,不同的代理人会协作培训共同的模型,既不将培训数据暴露于他人,也不需要进行计算密集的集中式基础架构。本文着重于在入侵检测领域的联合学习方法的应用。两种技术均进行了详细描述,并对当前的科学进步进行了审查和分类。最后,本文重点介绍了最近作品中存在的局限性,并为这项技术提供了一些未来的方向。

Intrusion detection systems are evolving into intelligent systems that perform data analysis searching for anomalies in their environment. The development of deep learning technologies opened the door to build more complex and effective threat detection models. However, training those models may be computationally infeasible in most Internet of Things devices. Current approaches rely on powerful centralized servers that receive data from all their parties -- violating basic privacy constraints and substantially affecting response times and operational costs due to the huge communication overheads. To mitigate these issues, Federated Learning emerged as a promising approach where different agents collaboratively train a shared model, neither exposing training data to others nor requiring a compute-intensive centralized infrastructure. This paper focuses on the application of Federated Learning approaches in the field of Intrusion Detection. Both technologies are described in detail and current scientific progress is reviewed and categorized. Finally, the paper highlights the limitations present in recent works and presents some future directions for this technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源