论文标题
来自精制拓扑递归的量子曲线:属0情况
Quantum curves from refined topological recursion: the genus 0 case
论文作者
论文摘要
我们以几何形式(不参考物理模型)制定了适用于第二度的零曲线的精致拓扑递归,灵感来自Chekhov-eynard和Marchal,并在此过程中引入了新的自由度。对于此类曲线,我们证明了类似于未精制情况的递归的基本特性。我们显示了由于Iwaki-Koike-Takei引起的光谱曲线的量化,可以推广到此设置并给出显式公式,事实证明,该公式与简单的转换与未精制的情况有关。对于重要的示例集,我们写下量子曲线,发现在Nekrasov-Shatashvili限制中,它们采用了一个特别简单的形式。
We formulate geometrically (without reference to physical models) a refined topological recursion applicable to genus zero curves of degree two, inspired by Chekhov-Eynard and Marchal, introducing new degrees of freedom in the process. For such curves, we prove the fundamental properties of the recursion analogous to the unrefined case. We show the quantization of spectral curves due to Iwaki-Koike-Takei can be generalized to this setting and give the explicit formula, which turns out to be related to the unrefined case by a simple transformation. For an important collection of examples, we write down the quantum curves and find that in the Nekrasov-Shatashvili limit, they take an especially simple form.