论文标题
集成量子频率处理器的设计方法
Design Methodologies for Integrated Quantum Frequency Processors
论文作者
论文摘要
频率编码的量子信息为量子通信和网络提供了有趣的机会,其量子频率处理器范式基于电磁相调节器和傅立叶变换脉冲塑料形成,为量子门的可扩展构建提供了途径。然而,迄今为止的所有实验示范都依赖于占据着重要物理空间并赋予可观损失的离散光纤成分。在本文中,我们介绍了一个用于设计量子频率处理器的模型,该量子频率处理器包括基于微孔谐振器的脉冲形状和集成相调节器。我们估计单个和平行的频率箱哈达姆门的性能,找到了高保真度值,这些值扩展到具有相对较宽的带宽的频率箱。通过合并多阶滤波器设计,我们探索了紧密频率间距的限制,这是一个在批量光学方面极难获得的制度。总体而言,我们的模型是通用,易于使用的,并且可扩展到其他材料平台,为集成光子学中的未来频率处理器提供了急需的设计工具。
Frequency-encoded quantum information offers intriguing opportunities for quantum communications and networking, with the quantum frequency processor paradigm -- based on electro-optic phase modulators and Fourier-transform pulse shapers -- providing a path for scalable construction of quantum gates. Yet all experimental demonstrations to date have relied on discrete fiber-optic components that occupy significant physical space and impart appreciable loss. In this article, we introduce a model for the design of quantum frequency processors comprising microring resonator-based pulse shapers and integrated phase modulators. We estimate the performance of single and parallel frequency-bin Hadamard gates, finding high fidelity values that extend to frequency bins with relatively wide bandwidths. By incorporating multi-order filter designs as well, we explore the limits of tight frequency spacings, a regime extremely difficult to obtain in bulk optics. Overall, our model is general, simple to use, and extendable to other material platforms, providing a much-needed design tool for future frequency processors in integrated photonics.