论文标题

超级像素的高光谱遥感图像的无监督分割

Unsupervised Segmentation of Hyperspectral Remote Sensing Images with Superpixels

论文作者

Barbato, Mirko Paolo, Napoletano, Paolo, Piccoli, Flavio, Schettini, Raimondo

论文摘要

在本文中,我们提出了一种无监督的方法,用于高光谱遥感图像分割。该方法利用了平均移位聚类算法,该算法将作为输入的初步高光谱超像素分割以及光谱像素信息。所提出的方法不需要分割类别作为输入参数,并且不利用有关要分割的土地覆盖或土地使用类型的A-Priori知识(例如水,植被,建筑等)。进行了Salinas,Salinasa,Pavia Center和Pavia University数据集的实验。绩效是根据归一化互信息,调整后的兰德指数和F1得分来衡量的。结果证明了与艺术的状态相比,提出的方法的有效性。

In this paper, we propose an unsupervised method for hyperspectral remote sensing image segmentation. The method exploits the mean-shift clustering algorithm that takes as input a preliminary hyperspectral superpixels segmentation together with the spectral pixel information. The proposed method does not require the number of segmentation classes as input parameter, and it does not exploit any a-priori knowledge about the type of land-cover or land-use to be segmented (e.g. water, vegetation, building etc.). Experiments on Salinas, SalinasA, Pavia Center and Pavia University datasets are carried out. Performance are measured in terms of normalized mutual information, adjusted Rand index and F1-score. Results demonstrate the validity of the proposed method in comparison with the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源