论文标题

涉及立方非线性的分数延迟差分方程的稳定性和分叉分析

Stability and Bifurcation Analysis of a Fractional Order Delay Differential Equation Involving Cubic Nonlinearity

论文作者

Bhalekar, Sachin, Gupta, Deepa

论文摘要

分数衍生物和延迟是对自然系统中的内存属性进行建模的重要工具。这项工作涉及分数阶延迟差分方程的稳定性分析\ begin {qore*} d^αx(t)=ΔX(t-τ)-εx(t-τ)(t-τ)^3-px(t)^2+q x(t)。 \ end {方程*}我们在平衡点附近提供该系统的线性化,并提出线性化稳定性条件。为了讨论平衡点的稳定性,我们建议有关参数$δ$,$ε$,$ p $,$ q $和$τ$的各种条件。即使系统中涉及五个参数,我们也能够以任何正$ε$和$ p $提供$qδ-$平面的稳定区域草图。这提供了系统稳定性的完整分析。此外,我们研究了提出的模型中的混乱。该系统表现出有关广泛延迟参数的混乱。

Fractional derivative and delay are important tools in modeling memory properties in the natural system. This work deals with the stability analysis of a fractional order delay differential equation \begin{equation*} D^αx(t)=δx(t-τ)-εx(t-τ)^3-px(t)^2+q x(t). \end{equation*} We provide linearization of this system in a neighbourhood of equilibrium points and propose linearized stability conditions. To discuss the stability of equilibrium points, we propose various conditions on the parameters $δ$, $ε$, $p$, $q$ and $τ$. Even though there are five parameters involved in the system, we are able to provide the stable region sketch in the $qδ-$plane for any positive $ε$ and $p$. This provides the complete analysis of stability of the system. Further, we investigate chaos in the proposed model. This system exhibits chaos for a wide range of delay parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源