论文标题

使用统计自然语言处理技术为查询提出相关问题

Suggesting Relevant Questions for a Query Using Statistical Natural Language Processing Technique

论文作者

Nayak, Shriniwas, Kanetkar, Anuj, Hirudkar, Hrushabh, Ghotkar, Archana, Sonawane, Sheetal, Litake, Onkar

论文摘要

为用户查询提出类似的问题,有许多应用程序,从减少电子商务网站上的用户的搜索时间,对公司中的员工进行培训到学生的整体学习。在现有架构中,使用自然语言处理技术来提出类似问题。主要研究了两种用于查找文本相似性的方法,即句法和语义,但是每种都有其吸引力,并且无法提供所需的结果。在本文中,提出了一种自学组合方法来确定文本相似性,该方法引入了强大的加权句法和语义相似性索引,以从预定的数据库中确定相似问题,此方法了解了所考虑的数据库中提到的方法的最佳组合。进行了全面的分析,以证明拟议方法对现有文献的效率和功效是合理的。

Suggesting similar questions for a user query has many applications ranging from reducing search time of users on e-commerce websites, training of employees in companies to holistic learning for students. The use of Natural Language Processing techniques for suggesting similar questions is prevalent over the existing architecture. Mainly two approaches are studied for finding text similarity namely syntactic and semantic, however each has its draw-backs and fail to provide the desired outcome. In this article, a self-learning combined approach is proposed for determining textual similarity that introduces a robust weighted syntactic and semantic similarity index for determining similar questions from a predetermined database, this approach learns the optimal combination of the mentioned approaches for a database under consideration. Comprehensive analysis has been carried out to justify the efficiency and efficacy of the proposed approach over the existing literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源