论文标题

时间知识预测的自适应伪锡亚姆政策网络

Adaptive Pseudo-Siamese Policy Network for Temporal Knowledge Prediction

论文作者

Shao, Pengpeng, Liu, Tong, Che, Feihu, Zhang, Dawei, Tao, Jianhua

论文摘要

时间知识预测是事件预警的至关重要任务,近年来引起了人们越来越多的关注,该警告旨在通过在时间知识图上使用相关的历史事实来预测未来事实。这项预测任务有两个主要困难。首先,从历史事实的角度来看,如何对事实的进化模式进行建模以准确预测查询。其次,从查询角度来看,如何处理查询包含统一框架中可见和看不见的实体的两种情况。在这两个问题的驱动下,我们提出了一个基于强化学习的新型自适应伪塞亚姆政策网络,用于时间知识预测。具体来说,我们将模型中的策略网络设计为由两个子政策网络组成的伪塞亚姆政策网络。在子政策网络I中,代理在实体关联路径上搜索查询的答案,以捕获静态进化模式。在子政策网络II中,代理在关系时间路径上搜索查询的答案,以与看不见的实体打交道。此外,我们开发了一个时间关系编码器来捕获时间进化模式。最后,我们设计了一种门控机制,以自适应整合两个子政策网络的结果,以帮助代理商专注于目标答案。为了评估我们的模型性能,我们对四个基准数据集进行链路预测,实验结果表明,与现有方法相比,我们的方法获得了相当大的性能。

Temporal knowledge prediction is a crucial task for the event early warning that has gained increasing attention in recent years, which aims to predict the future facts by using relevant historical facts on the temporal knowledge graphs. There are two main difficulties in this prediction task. First, from the historical facts point of view, how to model the evolutionary patterns of the facts to predict the query accurately. Second, from the query perspective, how to handle the two cases where the query contains seen and unseen entities in a unified framework. Driven by the two problems, we propose a novel adaptive pseudo-siamese policy network for temporal knowledge prediction based on reinforcement learning. Specifically, we design the policy network in our model as a pseudo-siamese policy network that consists of two sub-policy networks. In sub-policy network I, the agent searches for the answer for the query along the entity-relation paths to capture the static evolutionary patterns. And in sub-policy network II, the agent searches for the answer for the query along the relation-time paths to deal with unseen entities. Moreover, we develop a temporal relation encoder to capture the temporal evolutionary patterns. Finally, we design a gating mechanism to adaptively integrate the results of the two sub-policy networks to help the agent focus on the destination answer. To assess our model performance, we conduct link prediction on four benchmark datasets, the experimental results demonstrate that our method obtains considerable performance compared with existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源