论文标题

估计和惩罚推荐系统的偏好转移

Estimating and Penalizing Induced Preference Shifts in Recommender Systems

论文作者

Carroll, Micah, Dragan, Anca, Russell, Stuart, Hadfield-Menell, Dylan

论文摘要

推荐系统(RS)向用户显示的内容会影响他们。因此,当选择推荐部署时,也隐含地选择了在用户中诱导特定的内部状态。更重要的是,通过长匹马优化训练的系统将有直接的激励措施来操纵用户:在这项工作中,我们专注于转移用户偏好的动机,因此他们更容易满足。我们认为 - 在部署之前 - 系统设计师应:估计推荐人会引起的转变;评估这种转变是否是不受欢迎的;也许甚至可以积极优化以避免有问题的转变。这些步骤涉及两种具有挑战性的成分:估算需要预测假设算法如何影响用户偏好,如果部署 - 我们通过使用历史用户交互数据来训练隐含其偏好动态的预测用户模型来实现此操作;评估和优化还需要指标来评估这种影响是操纵性还是其他不必要的 - 我们使用“安全转移”的概念,该概念定义了行为安全的信任区域:例如,用户在不干扰系统的情况下自然而然的方式可以说“安全”。在模拟实验中,我们表明我们学习的偏好动力学模型可有效估计用户偏好以及它们如何对新推荐人的反应。此外,我们表明,为留在信任区域中优化的推荐人可以避免操纵行为,同时仍在产生参与度。

The content that a recommender system (RS) shows to users influences them. Therefore, when choosing a recommender to deploy, one is implicitly also choosing to induce specific internal states in users. Even more, systems trained via long-horizon optimization will have direct incentives to manipulate users: in this work, we focus on the incentive to shift user preferences so they are easier to satisfy. We argue that - before deployment - system designers should: estimate the shifts a recommender would induce; evaluate whether such shifts would be undesirable; and perhaps even actively optimize to avoid problematic shifts. These steps involve two challenging ingredients: estimation requires anticipating how hypothetical algorithms would influence user preferences if deployed - we do this by using historical user interaction data to train a predictive user model which implicitly contains their preference dynamics; evaluation and optimization additionally require metrics to assess whether such influences are manipulative or otherwise unwanted - we use the notion of "safe shifts", that define a trust region within which behavior is safe: for instance, the natural way in which users would shift without interference from the system could be deemed "safe". In simulated experiments, we show that our learned preference dynamics model is effective in estimating user preferences and how they would respond to new recommenders. Additionally, we show that recommenders that optimize for staying in the trust region can avoid manipulative behaviors while still generating engagement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源