论文标题
动态合奏贝叶斯滤波器,用于强大控制人脑机界面
Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-machine Interface
论文作者
论文摘要
目的:脑机界面(BMIS)旨在提供对诸如假体和计算机光标等设备的直接控制,这些设备表现出很大的移动恢复潜力。当前BMI的一个主要局限性在于由于神经信号的可变性,在线控制中的性能不稳定,这严重阻碍了BMI的临床可用性。方法:为了处理在线BMI控制中的神经变异性,我们提出了一个动态的集合贝叶斯过滤器(Dyensemble)。 Dyensemble通过动态测量模型扩展了贝叶斯过滤器,该模型可以随着神经变化的方式适应其参数。这是通过学习候选功能并根据神经信号动态加权并组装它们来实现的。通过这种方式,《疏远》应对信号的可变性并改善了在线控制的鲁棒性。结果:与人类参与者进行的在线BMI实验表明,与速度Kalman滤波器相比,浮肿可显着提高控制准确性(将成功率提高13.9%,并在随机目标追击任务中减少13.5%)和稳健性(在不同的实验日内表现更稳定)。结论:我们的结果证明了在线BMI控制中的浮肿的优势。意义:浮蓝色框架是一种新颖而灵活的神经解码框架,这对不同的神经解码应用有益。
Objective: Brain-machine interfaces (BMIs) aim to provide direct brain control of devices such as prostheses and computer cursors, which have demonstrated great potential for mobility restoration. One major limitation of current BMIs lies in the unstable performance in online control due to the variability of neural signals, which seriously hinders the clinical availability of BMIs. Method: To deal with the neural variability in online BMI control, we propose a dynamic ensemble Bayesian filter (DyEnsemble). DyEnsemble extends Bayesian filters with a dynamic measurement model, which adjusts its parameters in time adaptively with neural changes. This is achieved by learning a pool of candidate functions and dynamically weighting and assembling them according to neural signals. In this way, DyEnsemble copes with variability in signals and improves the robustness of online control. Results: Online BMI experiments with a human participant demonstrate that, compared with the velocity Kalman filter, DyEnsemble significantly improves the control accuracy (increases the success rate by 13.9% and reduces the reach time by 13.5% in the random target pursuit task) and robustness (performs more stably over different experiment days). Conclusion: Our results demonstrate the superiority of DyEnsemble in online BMI control. Significance: DyEnsemble frames a novel and flexible framework for robust neural decoding, which is beneficial to different neural decoding applications.