论文标题

连接多个时间量子过程的交通量和经典性

Connecting Commutativity and Classicality for Multi-Time Quantum Processes

论文作者

Sakuldee, Fattah, Taranto, Philip, Milz, Simon

论文摘要

了解古典和量子之间的分界线是现代物理学的一个重要问题。这种理解的发展需要清楚地了解目前正在使用的量子理论中“古典性”的各种同时概念。在这里,我们关注测量统计的Kolmogorov一致性之间的关系 - 标准概率理论中经典随机过程的基础基础 - 测量算子的交换性(或缺失) - 量子理论核心的概念。 Kolmogorov的一致性意味着(可能是量子)系统上的顺序测量的统计数据可以完全通过经典随机过程来解释,从而提供了经典性的操作概念。另一方面,测量运算符的换算性是一种结构性特性,它在古典物理学中及其分解是不确定性原理的起源,这是一种根本上量子现象。在这里,我们正式化了这两个先验独立的经典概念,表明它们在一般而言是与众不同的,并且详细介绍了它们对无内存的多时间量子过程的含义。

Understanding the demarcation line between classical and quantum is an important issue in modern physics. The development of such an understanding requires a clear picture of the various concurrent notions of `classicality' in quantum theory presently in use. Here, we focus on the relationship between Kolmogorov consistency of measurement statistics -- the foundational footing of classical stochastic processes in standard probability theory -- and the commutativity (or absence thereof) of measurement operators -- a concept at the core of quantum theory. Kolmogorov consistency implies that the statistics of sequential measurements on a (possibly quantum) system could be explained entirely by means of a classical stochastic process, thereby providing an operational notion of classicality. On the other hand, commutativity of measurement operators is a structural property that holds in classical physics and its breakdown is the origin of the uncertainty principle, a fundamentally quantum phenomenon. Here, we formalise the connection between these two a priori independent notions of classicality, demonstrate that they are distinct in general and detail their implications for memoryless multi-time quantum processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源