论文标题
局部网格适应的三角形网格上不稳定的Euler方程的啤酒残差分布方案
An ALE residual distribution scheme for the unsteady Euler equations over triangular grids with local mesh adaptation
论文作者
论文摘要
这项工作为任意拉格朗日欧拉框架内的Euler方程提供了一种新颖的无插值网状适应技术。对于空间离散化,我们考虑了一个残差分配方案,该方案提供了一种非常简单的方法来实现非结构化网格的高阶精度。由于对网格连接性的特殊解释是一系列虚拟的连续变形的变化,我们可以通过构造所谓的几何保护定律来执行,这有助于避免在解决动态域的管理方程时避免虚假振荡。该策略保留了基本固定触发性方案的数值特性,例如保守性和稳定性,因为它避免了不同网格之间解决方案的明确插值。通过在非结构化的网格上对稳定和不稳定的流量问题的二维模拟进行了验证。
This work presents a novel interpolation-free mesh adaptation technique for the Euler equations within the arbitrary Lagrangian Eulerian framework. For the spatial discretization, we consider a residual distribution scheme, which provides a pretty simple way to achieve high order accuracy on unstructured grids. Thanks to a special interpretation of the mesh connectivity changes as a series of fictitious continuous deformations, we can enforce by construction the so-called geometric conservation law, which helps to avoid spurious oscillations while solving the governing equations over dynamic domains. This strategy preserves the numerical properties of the underlying, fixed-connectivity scheme, such as conservativeness and stability, as it avoids an explicit interpolation of the solution between different grids. The proposed approach is validated through the two-dimensional simulations of steady and unsteady flow problems over unstructured grids.