论文标题
Kaplansky问题的变体用于正矩阵上的地图
A Variant of the Kaplansky Problem for Maps on Positive Matrices
论文作者
论文摘要
我们证明,保留顺序和收缩频谱的正面复杂矩阵上的所有注射图均由单一或反联合结合实现。我们通过反例显示所有假设都是必不可少的。结果很容易概括为Hermitian矩阵上的地图。
We prove that all injective maps on positive complex matrices which preserve order and shrink spectrum are implemented by unitary or antiunitary conjugations. We show by counterexamples that all assumptions are indispensable. The result easily generalizes to maps on hermitian matrices.