论文标题
哪个合作文本生成的歧视者?
Which Discriminator for Cooperative Text Generation?
论文作者
论文摘要
语言模型通过连续预测过去的代币的概率分布来生成文本。越来越多的感兴趣领域试图在解码过程中利用外部信息,以使生成的文本具有所需的属性,例如更自然,无毒,忠实或具有特定的写作方式。一种解决方案是在每个一代步骤中使用分类器,从而导致合作环境,分类器将语言模型分布的解码转移到手头任务的相关文本上。在本文中,我们研究了(基于变压器的)歧视者的三个家族,以完成合作解码的这一特定任务:双向,从右而生成的。我们评估了这些不同类型的歧视因子的利弊,以进行合作生成,探索各自的分类任务准确性,以及它们对产生的样本质量和计算性能的影响。我们还提供了用于实验的强大合作解码策略的批处理实施,即蒙特卡洛树搜索,与每个自然语言生成的歧视者一起工作。
Language models generate texts by successively predicting probability distributions for next tokens given past ones. A growing field of interest tries to leverage external information in the decoding process so that the generated texts have desired properties, such as being more natural, non toxic, faithful, or having a specific writing style. A solution is to use a classifier at each generation step, resulting in a cooperative environment where the classifier guides the decoding of the language model distribution towards relevant texts for the task at hand. In this paper, we examine three families of (transformer-based) discriminators for this specific task of cooperative decoding: bidirectional, left-to-right and generative ones. We evaluate the pros and cons of these different types of discriminators for cooperative generation, exploring respective accuracy on classification tasks along with their impact on the resulting sample quality and computational performances. We also provide the code of a batched implementation of the powerful cooperative decoding strategy used for our experiments, the Monte Carlo Tree Search, working with each discriminator for Natural Language Generation.