论文标题

强大的推断对未破坏性的一声设备测试在带指数寿命的继压模型下

Robust inference for non-destructive one-shot device testing under step-stress model with exponential lifetimes

论文作者

Balakrishnan, Narayanaswamy, Castilla, Elena, Jaenada, María, Pardo, Leandro

论文摘要

一声设备分析涉及一个极端的间隔审查情况,其中只能知道故障时间是在测试时间之前还是之后。测试时,某种单发设备不会被破坏,因此可以在实验中继续进行推理,如果它们在检查时间之前没有失败,就可以提供额外的信息。此外,通过在不同的压力水平上运行测试,可以通过加速生命测试(ALTS)快速估算其可靠性。特别是,施加压力测试使实验者可以在生命测试实验期间逐渐增加应力水平。通常假定累积暴露模型对于施加压力模型,将一个应力水平的单位的寿命分布与先前的应力水平下的寿命分布相关。在本文中,VWE基于密度差异(DPD)开发可靠的估计量和Z型测试统计量,用于测试带有指数级寿命分布的替补alts下的无损性一轮设备的线性零假设。我们研究估计量和测试统计的渐近性和鲁棒性特性,对不同寿命特征(例如可靠性,分布分位数和设备的平均寿命)产生点估计和置信区间。进行了仿真研究,以评估此处开发的推理方法的性能,并最终分析了一些现实生活中的数据集以说明性目的。

One-shot devices analysis involves an extreme case of interval censoring, wherein one can only know whether the failure time is either before or after the test time. Some kind of one-shot devices do not get destroyed when tested, and so can continue within the experiment, providing extra information for inference, if they did not fail before an inspection time. In addition, their reliability can be rapidly estimated via accelerated life tests (ALTs) by running the tests at varying and higher stress levels than working conditions. In particular, step-stress tests allow the experimenter to increase the stress levels at pre-fixed times gradually during the life-testing experiment. The cumulative exposure model is commonly assumed for step-stress models, relating the lifetime distribution of units at one stress level to the lifetime distributions at preceding stress levels. In this paper,vwe develop robust estimators and Z-type test statistics based on the density power divergence (DPD) for testing linear null hypothesis for non-destructive one-shot devices under the step-stress ALTs with exponential lifetime distribution. We study asymptotic and robustness properties of the estimators and test statistics, yielding point estimation and confidence intervals for different lifetime characteristic such as reliability, distribution quantiles and mean lifetime of the devices. A simulation study is carried out to assess the performance of the methods of inference developed here and some real-life data sets are analyzed finally for illustrative purpose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源