论文标题
对应于混沌BKL方案的量子动力学
Quantum dynamics corresponding to chaotic BKL scenario
论文作者
论文摘要
我们使用积分量化方法对Belinski-Khalatnikov-Lifshitz(BKL)方案进行了量化解决方案。量化涂抹重力奇点,避免了其在配置空间中的定位。后者是根据空间和时间坐标来定义的,这些坐标是在相同的基础上对其进行处理的,该基础可以尊重一般相对性的协方差。随着系统向重力奇异性的发展,相对量子扰动会增长。量子随机性扩大了BKL场景的确定性经典混乱。此外,我们的结果表明,可以在量子水平上避免使用一般相对性的一般奇异性,从而支持量子重力有机会成为常规理论的期望。
We quantize the solution to the Belinski-Khalatnikov-Lifshitz (BKL) scenario using the integral quantization method. Quantization smears the gravitational singularity avoiding its localization in the configuration space. The latter is defined in terms of spatial and temporal coordinates, which are treated on the same footing that enables respecting covariance of general relativity. The relative quantum perturbations grow as the system evolves towards the gravitational singularity. The quantum randomness amplifies the deterministic classical chaos of the BKL scenario. Additionally, our results suggest that the generic singularity of general relativity can be avoided at quantum level giving support to the expectation that quantum gravity has good chance to be a regular theory.