论文标题
Morgan-Voyce多项式系数的渐近正态性
Asymptotic Normality of the Coefficients of the Morgan-Voyce Polynomials
论文作者
论文摘要
我们研究由$ q_n(x)提供的多项式的算术和渐近属性:= x \ sum_ {k = 1}^n k \,q_ {n-k} $,初始值$ q_0(x)= 1 $。该系数满足涉及斐波那契数的中心限制定理和局部极限定理。我们采用浆果和Esseen,Harper,Bender和Canfield的方法。
We study arithmetic and asymptotic properties of polynomials provided by $Q_n(x):= x \sum_{k=1}^n k \, Q_{n-k}(x)$ with initial value $Q_0(x)=1$. The coefficients satisfy a central limit theorem and a local limit theorem involving Fibonacci numbers. We apply methods of Berry and Esseen, Harper, Bender, and Canfield.